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ABSTRACT 
 

Metaheuristics are considered the first choice in addressing structural optimization 

problems. One of the complicated structural optimization problems is the highly nonlinear 

dynamic truss shape and size optimization with multiple natural frequency constraints. On 

the other hand, natural frequency constraints are useful to control the responses of a 

dynamically exciting structure. In this regard, this study uses for the first time the water 

evaporation optimization (WEO) algorithm to address this problem. Four benchmark trusses 

are considered for experimental investigation of the WEO. Obtained results indicate the 

comparative performance of WEO to the best-known algorithms in this problem, high 

performance in comparison to those of different optimization techniques, and high 

performance in comparison to all algorithms in terms of robustness. The simulation results 

clearly show a good balance between the global and local exploration abilities of WEO and 

its potential robust efficiency for other complicated constrained engineering optimization 

problems.  
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1. INTRODUCTION 
 

Metaheuristics are today the first choice for researchers and practitioners in addressing 

various types of optimization problems. In this regard knowledge about these algorithms is 

expanding day by day and this development, in general, can be divided into two important 
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branches: algorithmic and application aspects. The first one tries to improve metaheuristics 

[1 and 2] to have more better performance and the latter tries to adopt them for new 

optimization problems. Although the first branch is necessary to have efficient algorithms, 

the second one must also be considered simultaneously to give us comprehensive algorithm 

effectiveness. For the first branch novel algorithms have been invented or improved using 

different strategies. The second branch has started to grow interdisciplinary almost seriously 

since the beginning of this century. This growth coincides with the development of 

computer science in terms of software and hardware, which has enabled the scientific 

community to model and solve complex problems. Between the novel algorithms, one can 

refer to the charged system search, the ray optimization, the colliding bodies optimization, 

the teaching-learning-based optimization, the artificial bee colony algorithm, the harmony 

search, the grey wolf optimizer, the cuckoo search algorithm as the most well-known recent 

metaheuristics [3-10]. Between optimization problems along with combinatorial 

optimization problems, engineering problems are known as the most complex optimization 

problems because of their constrained and mixed continuous and discrete nature [11]. 

Structural optimization problems are one of the most well-known engineering optimization 

problems and among them, the single objective structural weight optimization is still 

challenging especially if the frequency constraints are included [12].  

The water evaporation optimization (WEO) algorithm is one of the recent metaheuristics 

invented by Kaveh and Bakhshpoori [12] inspired by the evaporation process of a tiny 

amount of water molecules adhered on a solid surface with different wettability. WEO has 

been successfully applied on single objective structural weight optimization of 2D and 3D 

truss and frame structures [13-15]. Dynamic truss shape and size optimization with multiple 

natural frequency constraints is known as one of the highly nonlinear structural optimization 

problems. It has been studied since the 1980s with the paper of Bellagamba and Yang [16] 

and continuing with many other researchers using various metaheuristics [17-25]. An 

improved version of the particle swarm optimization named democratic PSO is used for 

truss layout and size optimization with frequency constraints in [17]. [18] applied colliding 

bodies optimization for truss optimization with multiple frequency constraints. Millan and 

Filho [19] developed a modified simulated annealing algorithm to address this problem. In 

another study, they presented a modified version of the social engineering optimizer and 

solved the truss optimization problem with natural frequency constraints [20]. Kaveh et al. 

addressed this problem for benchmark trusses [21 and 22] dome structures [23], cyclically 

symmetric trusses [24], large-scale dome-shaped trusses [25], and cyclically large-size 

braced steel domes [26]. The main reasons for this focus are: frequency constraints are 

highly non-linear, non-convex, and implicit concerning the design variables, natural 

frequencies of a structure provide useful information about the dynamic behavior of the 

system, and considering the simultaneous shape and sizing optimization,  
This study aims to adopt the WEO for truss layout and size optimization problems 

considering dynamic constraints to increase its comprehensiveness and popularity. For this 

purpose, WEO experimented on four benchmark trusses taken from literature. Performance 

evaluation is made by comparing with other algorithms. Numerical results reveal that the 

WEO performs comparatively to other search techniques available in the literature. 

The remaining sections of this paper are structured as follows. In Section 2 WEO 
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algorithm is outlined and the problem is formulated. Section 3 applies WEO on the four 

benchmark trusses and compares its performance against other algorithms. Section 5 

investigates the algorithm convergence behavior. Finally, the paper is concluded in Section 

4. 

 

2. FORMULATION OF THE OPTIMIZATION PROBLEM 

 

In a frequency constraint truss layout and size optimization problem the aim is to minimize 

the weight of the structure while satisfying some constraints on natural frequencies. The 

design variables are considered to be the cross-sectional areas of the members and/or the 

coordinates of some nodes. Prescribing the truss topology and assuming it to be unchanged, 

the optimization problem can be stated as follows: 
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where {V} is the set of design variables; k is the number of independent design variables, vi, 

including either a shape or sizing variable must take a value between its lower bound vmin 

and upper bound vmax, respectively. W is the total weight of the truss, and the total number of 

elements is denoted by n. Le, ρe, and Ae are respectively length, material density, and cross-

sectional area of the eth element. The first frequency constraint (g1) represents that some 

natural frequencies ωj, should exceed the prescribed lower limits. The second frequency 

constraint (g2) represents that other natural frequencies should be less than the prescribed 

upper limits. To handle optimization constraints, a penalty approach was utilized in this 

study by introducing the following pseudo-cost function: 

 

     cos V ( . )  V ,    = max ,  g ({V})2
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t 1 j

j 1

f 1 W 0  
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where   is the total constraint violation. Constants ε1 and ε2 must be selected considering 

the exploration and the exploitation rate of the search space. In this study, ε1 was set equal to 

one while ε2 was selected to decrease the total penalty. Thus, ε2 increased from the value of 

1.5 set in the first steps of the search process to the value of 3 set toward the end of the 

optimization process. 

 

3. WATER EVAPORATION OPTIMIZATION ALGORITHM 
 

Inspiring by the evaporation of a tiny amount of water molecules on the solid surface with 
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different wettability which can be studied by molecular dynamics simulations, Kaveh and 

Bakhshpoori [13] developed a novel metaheuristic called Water Evaporation Optimization 

(WEO). The evaporation of water is very important in biological and environmental science. 

Based on the molecular dynamics simulations it is well-known that, as the surface changed 

from hydrophobicity to hydrophilicity, the evaporation speed does not show a monotonically 

decrease from intuition, but increases first, and then decreases after reaching a maximum 

value. When the surface wettability of the substrate is not high enough, the water molecules 

accumulate into the form of a sessile spherical cap. The predominant factor that affects the 

evaporation speed is the geometry shape of the water congregation. Meanwhile, when the 

surface wettability of the substrate is high enough, the water molecules spread to a 

monolayer and the geometric factor no longer affects much, and the energy barrier provided 

by the substrate instead geometry shape affects the evaporation speed. 

WEO considers water molecules as algorithm individuals. A solid surface or substrate 

with variable wettability is reflected as the search space. Decreasing the surface wettability 

(substrate changed from hydrophilicity to hydrophobicity) reforms the water aggregation 

from a monolayer to a sessile droplet. Such behavior is consistent with how the layout of 

individuals changes to each other as the algorithm progresses. Decreasing the wettability of 

the surface can represent the decrease of the objective function for a minimizing 

optimization problem. The evaporation flux rate of the water molecules is considered as the 

most appropriate measure for updating the individuals whose pattern of change is in good 

agreement with the local and global search ability of the algorithm and can help WEO to 

have significantly well-converged behavior and simple algorithmic structure. In the 

following the WEO algorithm is organized in five steps and then its pseudocode and 

flowchart are presented [27]. 

 

Step 1: Initialization 

Algorithm parameters are set in the first step. These parameters are the number of water 

molecules (nWM), and the maximum number of algorithm iterations (maxNITs). It should be 

noted that the minimum (MEPmin) and maximum (MEPmax) values of monolayer evaporation 

probability, and the minimum (DEPmin) and maximum (DEPmax) values of droplet 

evaporation probability can also be considered as the algorithm parameters. However, the 

evaporation probability parameters are determined efficiently for WEO based on the MD 

simulations results (MEPmin=0.03 and MEPmax=0.6; DEPmin=0.6 and DEPmax=1). WEO starts 

from nWM number of candidate solutions or water molecules randomly generated within the 

search space. These solutions construct the matrix of water molecules (WM). After 

evaluating the molecules, the corresponding objective function (Fit) and the penalized 

objective function (PFit) vectors are produced. In this study, nWM is considered as 10 and 

20000 numbers of structural analysis are considered as the stopping criteria.  

 

Step 2: Generating water evaporation matrix 

Every water molecule follows the evaporation probability rules specified for each phase 

of the algorithm in the previous subsection. 

 

Step 3: Generating random permutation-based step size matrix 



TRUSS LAYOUT AND SIZE OPTIMIZATION CONSIDERING DYNAMIC … 

 

129 

A random permutation-based step size matrix is generated. 

 

Step 4: Generating evaporated water molecules and updating the matrix of water 

molecules. 

The evaporated set of water molecules newWM is generated by adding the product of step 

size matrix and evaporation probability matrix to the current set of molecules WM according 

to Eq. (13-11). 

These new water molecules are evaluated based on the objective function. For molecule i 

(i=1, 2, …, nWM), if the newly generated molecule i (i=1, 2, …, nWM) is better than the old 

one it will replace it. The best water molecule (bestWM) is returned. 

 

Step 5: Terminating condition 

If the number of iterations of the algorithm (NITs) becomes larger than the maximum 

number of iterations (maxNITs), the algorithm terminates. Otherwise, go to Step 2. 

 

The pseudo-code of WEO is given as follows: 

 

Define the algorithm parameters: nWM, and maxNFEs. 

Generate random initial water molecules (WM). 

Evaluate the initial molecules, form their corresponding vectors of the objective function 

(Fit), and penalized objective function (PFit). 

While NFEs ≤ maxNFEs 
Update NITs. 

if NITs ≤ maxNITs/2 

Generate new water molecules based on the monolayer evaporation 

strategy. 

Evaluate the newly generated water molecules and replace the current 

molecules with the evaporated ones if the newest ones are better. 

Update NFEs. 

else 

Generate new water molecules based on the droplet evaporation strategy. 

Evaluate the newly generated water molecules and replace the current 

molecules with the evaporated ones if the newest ones are better. 

Update NFEs. 

end 

Determine and monitor the best water molecule (bestWM). 

end While 
 

4. NUMERICAL EXAMPLES 

 
4.1 Planar 10-bar truss 

Truss geometry including node and element numbering, a non-structural mass of 453.6 kg 

(1000 lb) is attached to all free nodes (1-4), and kinematic constraints are shown in Fig. 1. 
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The material is aluminum, with Young’s modulus equal to 68.95 GPa and a specific mass of 

2767.99 kg/m3. These properties are according to a study by Miguel and Miguel [28]. The 

natural frequency constraints are ω1 ≥ 7 Hz, ω2 ≥ 15 Hz, and ω3 ≥ 20 Hz. The allowable 

lower and upper bounds of the cross-sectional area (m2) are 0.645×10-4 and 50×10-4. 

 

(6) (4) (2)

(5) (3) (1)

1 2

3 4

7 8 9 10

5 6

X

Y

9.144 m.

9.144 m.

Aditional masses

9.144 m.

 
Figure 1. Schematic of the planar 10-bar truss structure [21]. 

 

Table 1 presents the best-optimized designs and the corresponding masses found by 

WEO and different methods: Firefly Algorithm (FA) [28], Harmoney Search (HS) [28], and 

Hybrid Particle Swarm and Swallow Swarm Optimization (HPSSO) algorithm [21]. Table 2 

represents the corresponding natural frequencies. Table 3 presents the optimization results 

based on the WEO obtained for 30 independent runs carried out from different initial 

populations randomly generated and other methods. The number of independent runs is 

considered as 5 for FA and HS, and 30 for HPSSO. As it is clear WEO shows the best 

performance in terms of accuracy and also robustness.  

 
Table 1. Optimization results (cm2) were obtained by WEO and other metaheuristics in the 

10-bar truss problem. 

Member 
FA HS HPSSO WEO 

[28] [28] [21] this study 

1 36.198 34.282 35.440 35.3931 

2 14.030 15.653 14.807 14.8895 

3 34.754 37.641 35.714 35.6111 

4 14.900 16.058 14.975 14.8020 

5 0.654 1.069 0.645 0.6450 

6 4.672 4.740 4.620 4.6244 

7 23.467 22.505 23.816 24.1682 

8 25.508 24.603 24.253 23.9486 

9 12.707 12.867 12.591 12.5054 

10 12.351 12.099 12.526 12.7206 

Mass (kg) 531.28 534.99 530.76 530.7294 
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Table 2. Optimum design of natural frequencies (HZ) for the 10 bar truss. 

Frequency 

number 

FA HS HPSSO WEO 

[28] [28] [21] this study 

1 7.0002 7.0028 7.000 7.0000 

2 16.1640 16.7429 16.180 16.1709 

3 20.0029 20.0548 20.001 20.0002 

4 20.0221 20.3351 20.008 20.0027 

5 28.5428 28.5232 28.545 28.5663 

6 28.9220 29.2911 28.957 28.9944 

7 48.3538 49.0342 48.556 48.5132 

8 50.8004 51.7451 51.057 51.0229 

 
Table 3. Comparison (kg) of robustness and reliability of WEO in the 10-bar truss problem. 

Algorithm Best Average Worst SD 

FA [28] 531.28 535.07 - 3.64 

HS [28] 534.99 537.68 - 2.49 

HPSSO [21] 530.7610 534.16 537.78 3.07 

WEO (this study) 530.7294 532.4507 537.4512 2.18 

 

4.2. Planar 37-bar truss 

The second optimization problem is the simply supported planar 37-bar truss shown in 

Fig.2. A nonstructural mass of m=10 kg is attached at each of the free nodes on the lower 

chord. The steel material has a modulus of elasticity of 210 Gpa and a density of 37800 

kg/m3. The truss is optimized on shape and size for its mass minimization with multiple 

frequency constraints. Nodal coordinates in the upper chord and cross-sectional areas of 

members are considered as design variables. All members on the lower chord have fixed 

cross-sectional areas of 4×10-3 m2 and the others have initial cross-sectional areas of 1×10-4 

m2 (also as the lower bound). In the optimization process, nodes on the upper chord can be 

shifted vertically. In addition, nodal coordinates and member areas are linked to maintaining 

structural symmetry. Therefore, only five shape variables and fourteen sizing variables will 

be redesigned for optimization. The natural frequency constraints are ω1 ≥ 20 Hz, ω2 ≥ 40 

Hz, and ω3 ≥ 60 Hz. 
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Figure 2. Schematic of the 37-bar truss structure [21]. 

 

Table 4 presents the best-optimized designs and the corresponding masses found by 

HPSSO and different methods (FA, HS, CSS, standard PSO, and DPSO), and Table 5 
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represents the corresponding natural frequencies. Table 6 presents the statistical results 

based on the HPSSO obtained for 30 independent runs carried out from different initial 

populations randomly generated and other methods. The number of independent runs is 

considered as 5 for FA and HS, 10 for CSS, and 30 for both standard and democratic PSO. 

Comparing the results reveal that WEO has better performance in terms of accuracy than 

other algorithms except for HPSSO which is a hybridized version of the PSO algorithm so 

the difference is too small. Robustness comparison shows that WEO is the most successful 

algorithm. 

 
Table 4. Comparison of optimization results (Y coordinates: m; and areas: cm2) obtained by 

WEO in the 37-bar truss problem. 

Member 
FA HS CSS HPSSO WEO 

[28] [28] [29] [21] this study 

Y3, Y19 0.9392 0.8415 0.8726 1.00000 1.0295 
Y5, Y17 1.3270 1.2409 1.2129 1.357692 1.3998 
Y7, Y15 1.5063 1.4464 1.3826 1.531195 1.5888 
Y9, Y13 1.6086 1.5334 1.4706 1.666696 1.7255 
Y11 1.6679 1.5971 1.5683 1.734591 1.8003 
A1, A27 2.9838 3.2031 2.9082 2.911875 2.7447 
A2, A26 1.1098 1.1107 1.0212 1.00000 1.0000 
A3, A24 1.0091 1.1871 1.0363 1.00000 1.0104 
A4, A25 2.5955 3.3281 3.9147 2.539312 2.5579 

A5, A23 1.2610 1.4057 1.0025 1.268065 1.1710 
A6, A21 1.1975 1.0883 1.2167 1.135538 1.2454 
A7, A22 2.4264 2.1881 2.7146 2.546305 2.4438 
A8, A20 1.3588 1.2223 1.2663 1.392601 1.4537 
A9, A18 1.4771 1.7033 1.8006 1.432117 1.4945 
A10, A19 2.5648 3.1885 4.0274 2.492398 2.1299 
A11, A17 1.1295 1.0100 1.3364 1.174892 1.1738 
A12, A15 1.3199 1.4074 1.0548 1.352078 1.4040 
A13, A16 2.9217 2.8499 2.8116 2.57735 2.4162 
A14 1.0004 1.0269 1.1702 1.00000 1.0030 

Mass (kg) 360.05 361.50 362.84 359.975 360.0968 

 

Table 5. Optimum design of natural frequencies (HZ) for the 37-bar truss. 

Frequency 

number 

FA HS CSS HPSSO WEO 

[28] [28] [29] [21] this study 

1 20.0024 20.0037 20.0000 20.0092 20.0039 
2 40.0019 40.0050 40.0693 40.0222 40.0173 
3 60.0043 60.0082 60.6982 60.0186 60.0024 
4 77.2153 77.9753 75.7339 76.2377 76.1241 
5 96.9900 99.2564 97.6137 95.5098 95.5010 
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Table 6. Comparison (kg) of robustness and reliability of WEO and other metaheuristic methods 

in the 37-bar truss problem. 

Algorithm Best Average Worst SD 

FA [28] 360.05 360.37 - 0.26 

HS [28] 361.50 362.04 - 0.52 

CSS [29] 362.84 366.77 - 3.742 

HPSSO [21] 359.975 364.1593 398.4291 7.864 

WEO (this study) 360.0968 361.6003 368.2501 1.6607 

 

4.3. The 52-bar dome shaped truss 

The third numerical test case is simultaneous layout and size optimization of a 52-bar 

domelike truss. The initial layout of the structure is depicted in Fig. 3.  
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Figure 3. Schematic of the dome shaped 52-bar truss structure [21]. 
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This test case is described in detail in Ref. [21]. The optimized designs found by the 

different algorithms are compared in Table 7 that shows also the corresponding structural 

weights, and Table 8 represents the corresponding natural frequencies. Statistical results of 

independent optimization runs are presented in Table 9. Performance comparison shows that 

WEO performs like the previous example in this test case. 

 
Table 7. Comparison of optimization results (Y coordinates: m; and areas: cm2) obtained by 

WEO and in the 52-bar truss problem. 

Member 
FA HS CSS HPSSO WEO 

[28] [28] [29] [21] this study 

Z1  6.4332 4.7374 5.2716 5.9086 5.9257 

X2  2.2208 1.5643 1.5909 2.2106 2.2291 

Z2  3.9202 3.7413 3.7093 3.7742 3.7561 

X6  4.0296 3.4882 3.5595 3.9859 3.9777 

Z6  2.5200 2.6274 2.5757 2.5007 2.5027 

A1  1.0050 1.0085 1.0464 1.0000 1.0078 

A2  1.3823 1.4999 1.7295 1.1800 1.1822 

A3  1.2295 1.3948 1.6507 1.2686 1.2811 

A4  1.2662 1.3462 1.5059 1.4268 1.4584 

A5  1.4478 1.6776 1.7210 1.4380 1.4275 

A6  1.0000 1.3704 1.0020 1.0000 1.0001 

A7  1.5728 1.4137 1.7415 1.5553 1.5452 

A8 1.4153 1.9378 1.2555 1.4083 1.4106 

Mass (kg) 197.53 214.94 205.237 195.1085 195.2988 

 
Table 8. Optimum design of natural frequencies (HZ) for the 52-bar truss. 

Frequency 

number 

FA HS CSS HPSSO WEO 

[12] [12] [11] [21] this study 

1 11.3119 12.2222 9.246  11.4099 11.4746 

2 28.6529 28.6577 28.648  28.6483 28.6498 

3 28.6529 28.6577 28.699  28.6490 28.6572 

4 28.8030 28.6618  28.735  28.7166 28.7220 

5 28.8030 30.0997  29.223  29.1050 29.0268 

 
Table 9. Comparison (kg) of robustness and reliability of WEO in the 52-bar truss problem. 

Algorithm Best Average Worst SD 

FA [28] 197.53 212.80 - 17.98 

HS [28] 214.94 229.88 - 12.44 

CSS [29] 205.237 213.101 - 7.391 

HPSSO [21] 195.1085 214.0870 270.0908 19.8910 

WEO (this study) 195.2988 197.9313 204.6654 2.9400 
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4.4. The 72-bar space truss 

The spatial 72-bar truss is considered the last test case. IT is schematized in Fig. 4 [21]. In 

the four nodes on the top of the structure (nodes 1–4), it is attached a non-structural mass of 

2270 kg. The design variables are the member cross-sectional areas, treated as continuous 

design variables, which are linked into 16 groups to maintain the structural symmetry. 

Member linking detail is available in Table 14 in Ref. [28]. The material is aluminum, with 

Young’s modulus equal to 68.95 GPa and a specific mass of 2770 kg/m3. These properties 

are according to the study by Miguel and Miguel [28] using FA and HS. The natural 

frequency constraints are ω1 = 4 Hz and ω3 ≥ 6 Hz. The allowable minimum area of the 

cross-sectional is 0.645×10-4 m2. 
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Figure 4. Schematic of the spatial 72-bar truss structure. 

 

Table 10 tabulates the best-optimized designs and the corresponding masses found by 

different methods and WEO. It should be noted that this test case is considered with 
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different details in the literature. Therefore this table contains two columns for WEO. The 

first column compares WEO with FA, HS, and HPSSO and the second one compares WEO 

with CSS, and HPSSO. Table 11 represents the corresponding natural frequencies. Table 12 

presents the optimization results based on the WEO obtained for 30 independent runs carried 

out from different initial populations randomly generated and other methods. The number of 

independent runs is considered as 5 for FA, HS, and TLBO, 10 for CSS, and 30 for HPSSO. 

It should be noted that this test case is considered with different details in the literature. 

Therefore this table contains two rows for WEO. The first row compares WEO with FA, HS, 

and HPSSO and the second one compares WEO with CSS and HPSSO. As it is clear WEO 

is again the best algorithm in terms of robustness and also shows a comparative performance 

in terms of accuracy. 

 
Table 10. Optimization results (cm2) were obtained by WEO in the 72-bar truss problem. 

Member 
FA HS HPSSO CSS HPSSO WEO 

[28] [28] [21] [29] [21] this study 

1 3.3411 3.6803 3.5329 2.528 3.4041 3.7448 

2 7.7587 7.6808 8.0157 8.704 7.5881 8.1431 

3 0.6450 0.6450 0.6450 0.645 0.6451 0.6457 

4 0.6450 0.6450 0.6450 0.645 0.6451 0.6468 

5 9.0202 9.4955 8.0510 8.283 8.2960 7.7538 

6 8.2567 8.2870 7.9363 7.888 7.7144 7.9413 

7 0.6450 0.6450 0.6450 0.645 0.6450 0.6493 

8 0.6450 0.6461 0.6450 0.645 0.6450 0.6475 

9 12.0450 11.4510 12.6954 14.666 12.4260 13.1020 

10 8.0401 7.8990 8.0952 6.793 8.2415 7.9536 

11 0.6450 0.6473 0.6450 0.645 0.6450 0.6450 

12 0.6450 0.6450 0.6470 0.645 0.6455 0.6452 

13 17.3800 17.4060 17.3953 16.464 17.0557 17.1117 

14 8.0561 8.2736 8.0887 8.809 8.2833 8.1000 

15 0.6450 0.6450 0.6455 0.645 0.6450 0.6459 

16 0.6450 0.6450 0.6450 0.645 0.6450 0.6450 

Mass (kg) 327.691 328.334  327.6923 328.814 324.7630 327.8048 

 
Table 11. Optimum design of natural frequencies (HZ) for the 72 bar truss. 

Frequency 

number 

FA HS CSS HPSSO WEO 

[28] [28] [29] [21] This study 

1 4.0000  4.0000  4.000 4.0000 4.0000 
2 4.0000  4.0000  4.000 4.0001 4.0001 
3 6.0000  6.0000  6.006 6.0004 6.0001 
4 6.2468  6.2723  6.21 6.2459 6.2612 
5 9.0380  9.0749  8.684 9.0801 9.1223 

*According to the details used by FA and HS [28] 
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Table 12. Comparison (kg) of robustness and reliability of WEO in the 72-bar truss problem. 

Algorithm Best Average Worst SD 

FA [28] 327.691 329.89 - 2.59 

HS [28] 328.334  332.64 - 2.39 

CSS [29] 328.814 337.70 - 5.42 

HPSSO [21] 324.7630 330.98 401.68 15.57 

WEO (this study) 327.8048 328.1885 328.8435 0.2730 

 

5. CONVERGANCE BEHAVIOUR OF WEO 
 

To make a deep evaluation of the performance of the WEO this section monitor and discuss 

its convergance behaviour. To do so first the convergance history of the WEO for a single 

run of trusses is depicted in Fig. 5. Convergence curves compare the history of the best, 

worst and average values of all particles. As it is clear WEO shows a good convergence 

speed for all test trusses and also in all the test cases, WEO can preserve the diversification 

until the last iterations of the optimization procedure.  
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Figure 5. Comparison of the convergence curves recorded for the best and worst particles and 

the average of all particles for the test problems: (a) 10-bar, (b) 37-bar, (c) 52-bar, and (d) 72-

bar. 

 

Any algorithm with the ability to make a good balance between exploration 

(diversification) and exploitation (intensification) is a favorite choice for optimization 

practitioners. This ability generally can guarantee robustness and adaptability. MHs start 

with a high diversity and tend toward high intensification as the optimization process 

progresses. In a nutshell, it should be mentioned that diversification should be made 

comprehensively to explore the search space and intensification should be made by clever 

exploitation at the right time and right place to ensure the convergence. Diversification 

should precede intensification because the algorithm needs a superior knowledge of the 

search space to make a clever intensification, and this can be accomplished at the expense of 

the convergence rate. Therefore diversity is one factor that can affect the more general 

concept of exploration and exploitation and any algorithm should preserve an efficient 

diversification till its end. To assess the performance of the MHs in the aspect of diversity, 

Kaveh and Zolghadr [30] defined a diversity index (DI) which reflects the ratio of the 

portion of the search space covered by the population to the entire search space at each 

iteration. Considering the number of the population of the metaheuristic and the number of 

design variables equal to NP and nV, respectively, it is formulated mathematically as: 

 

,max ,min

( ) ( )

 

 
  

  
 

2
NP nV
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j 1 i 1 i i

GB i X i1
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where Xj(i) is the value of the ith variable of the jth individual; GB(i) is the ith variable of 

the best candidate solution found by the algorithm till the iteration; and xi,min and xi,max are the 

minimum and maximum values of the ith design variable, respectively. The diversity index 

represents the distribution of the solution candidates around the best solution. Fig. 6 shows 

the variation of the DI for a single run of the WEO for all trusses concerning the iteration 

number. A desirable trend of variation of the diversity index is obtained by WEO. Up down 

step-like movements of the DI convergence history in the early stages of the optimization 

process show how WEO covers numerous promising points of the search space. High values 

of diversity are provided in the early stages of the optimization process. As the optimization 

process continues, the water molecules focus on more promising regions of the search space 

to perform a local search, and diversity index values gradually decrease. 
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Figure 6. Values of diversity index recorded in the optimization history for a single run of 

different test problems 

 

6. CONCLUSION 

 

Water evaporation optimization algorithm is applied to address the truss layout and size 

optimization considering dynamic constraints. This type of structural optimization problem 

is well known to be highly nonlinear and non-convex. Four benchmark numerical trusses are 

considered to evaluate the performance of WEO in comparison with other well-known 

metaheuristics. Simulation results reveal that WEO performs comparatively to the most 

well-known algorithms, high performance in comparison to those of different optimization 

techniques, and high performance in comparison to all algorithms in terms of robustness. 

Such a performance is due to the good balance between global and local exploration abilities 

of WEO which can make it a suitable algorithm with robust efficiency for other complicated 

constrained engineering optimization problems. 



TRUSS LAYOUT AND SIZE OPTIMIZATION CONSIDERING DYNAMIC … 

 

141 

 

REFERENCES 
 

1. Kaveh A, Talatahari S. Hybrid charged system search and particle swarm optimization for 

engineering design problems. Eng Comput, 2011; 28(4): 423-440. 

2. Kaveh A, Malakoutirad S. Hybrid genetic algorithm and particle swarm optimization for 

the force method-based simultaneous analysis and design, Iran J Sci Technol Trans B 

Eng, 2010; 34(B1): 15-34. 

3. Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search. 

Acta Mech, 2010; 213(3):267-89. 

4. Kaveh A, Khayatazad M. A new meta-heuristic method: ray optimization. Comput Struct, 

2012; 112: 283-94. 

5. Kaveh A, Mahdavi VR. Colliding bodies optimization: a novel meta-heuristic method, 

Comput Struct, 2014; 139: 18-27. 

6. Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel 

method for constrained mechanical design optimization problems. Comput Aided Des, 

2011; 43(3): 303-15. 

7. Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Appl Math 

Comput, 2009; 214(1): 108-32. 

8. Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony 

search, Simulation, 2001; 76(2): 60-68. 

9. Mirjalili SA, Mirjalili SM, Lewis A. Grey wolf optimizer, Adv Eng Softw, 2014; 69: 46-

61. 

10. Gandomi AH, Yang XS, Alavi AH. Cuckoo search algorithm: a metaheuristic approach to 

solve structural optimization problems. Eng Comput, 2013; 29(1): 17-35. 

11. Rahman MA, Sokkalingam R, Othman M, Biswas K, Abdullah L, Abdul Kadir E. Nature-

Inspired Metaheuristic Techniques for Combinatorial Optimization Problems: Overview 

and Recent Advances, Mathematics, 2021; 9(20): 2633. 

12. Kaveh A, Bakhshpoori T, Kalateh-Ahani M. Optimum plastic analysis of planar frames 

using ant colony system and charged system search algorithms. Sci Iran, 2013; 20(3): 

414-21. 

13. Kaveh A, Bakhshpoori T. Water evaporation optimization: a novel physically inspired 

optimization algorithm. Comput Struct, 2016; 167:69-85. 

14. Kaveh A, Bakhshpoori T. A new metaheuristic for continuous structural optimization: 

water evaporation optimization. Struct Multidiscipl Optim, 2016; 54(1): 23-43. 

15. Kaveh A, Bakhshpoori T. An accelerated water evaporation optimization formulation for 

discrete optimization of skeletal structures. Comput Struct, 2016; 177: 218-28. 

16. Grandhi RV. Structural optimization with frequency constraints–a review. AIAA J, 1993; 

31(12): 2296–303. 

17. Kaveh A, Zolghadr A. Democratic PSO for truss layout and size optimization with 

frequency constraints, Comput Struct, 2014; 130: 10-21. 

18. Kaveh A, Mahdavi VR. Colliding-bodies optimization for truss optimization with 

multiple frequency constraints, Adv Eng Softw, 2014; 70: 1-12. 



T. Bakhshpoori 

 

142 

19. Millan-Paramo C, Filho JEA. Size and shape optimization of truss structures with natural 

frequency constraints using modified simulated annealing algorithm, Arabian J Sci Eng, 

2020; 45: 3511-25. 

20. Millán-Páramo C, Millán-Romero E, Wilches FJ. Truss optimization with natural 

frequency constraints using modified social engineering optimizer, Int J Eng Res Technol, 

2020; 13(11): 3950-63. 

21. Kaveh A, Bakhshpoori T, Afshari E. Hybrid PSO and SSO algorithm for truss layout and 

size optimization considering dynamic constraints, Struct Eng Mech, 2015; 54(3): 453-74. 

22. Kaveh A, Biabani K, Kamalinejad M. Improved arithmetic optimization algorithm for 

structural optimization with frequency constraints, Int J Optim Civil Eng 2021; 11(4): 

663-93. 

23. Kaveh A, Biabani K, Kamalinejad M. An enhanced forensic-based investigation 

algorithm and its application to optimal design of frequency-constrained dome structures, 

Comput Struct, 2021; 256, 106643. 

24. Kaveh A, Zolghadr A. Optimal design of cyclically symmetric trusses with frequency 

constraints using cyclical parthenogenesis algorithm, Adv Struct Eng, 2018; 21(5): 739-

55. 

25. Kaveh A, Amirsoleimani P, Dadras Eslamlou A, Rahmani P. Frequency-constrained 

optimization of large-scale dome-shaped trusses using chaotic water strider algorithm, 

Struct, 2021; 32: 1604-18. 

26. Kaveh A, Javadi SM. Chaos-based firefly algorithms for optimization of cyclically large-

size braced steel domes with multiple frequency constraints, Comput Struct, 2019; 214: 

28-39. 

27. Kaveh A, Bakhshpoori T. Metaheuristics: outlines, MATLAB codes and examples. 

Springer; 2019, Switzerland. 

28. Miguel LF, Miguel LF. Shape and size optimization of truss structures considering 

dynamic constraints through modern metaheuristic algorithms. Expert Syst Appl, 2012; 

39(10): 9458-67. 

29. Kaveh A, Zolghadr A. Shape and size optimization of truss structures with frequency 

constraints using enhanced charged system search algorithm. Asian J Civ Eng, 2011; 

12(4): 487-509 

30. Kaveh A, Zolghadr A. Comparison of nine meta-heuristic algorithms for optimal design 

of truss structures with frequency constraints. Adv Eng Softw, 2014; 76:9–30. 


